Course: Advanced Natural Language Processing
duration: 28 hours |
Language: English (US) |
access duration: 180 days |

Details
In this course, you will get a comprehensive understanding of various neural network architectures used for Language processing tasks, their differences, and challenges, and will be able to easily apply these learnings in their development work/research. You will begin this course with a focus on deep learning for NLP, covering fundamentals, architectures, sentiment analysis, and transfer learning. Memory-based networks and their implementation are also discussed. Move on to transformer models like BERT and GPT, exploring their architectures, applications, and challenges. Finally, you will learn about language translation using transformer models, along with NLP case studies such as news scraping, article comprehension, and AI chatbot development.
Result
After completing this course, you will have proficiency in deep learning techniques for NLP and you can apply them in various industry scenarios.
Prerequisites
No formal prerequisites. However, some prior knowledge is highly recommended.
Target audience
Software Developer, Web Developer
Content
Advanced Natural Language Processing
Deep Learning for NLP: Introduction
In recent times, natural language processing (NLP) has seen many advancements, most of which are in deep learning models. NLP as a problem is very complicated, and deep learning models can handle that scale and complication with many different variations of neural network architecture. Deep learning also has a broad spectrum of frameworks that supports NLP problem solving out-of-the-box. Explore the basics of deep learning and different architectures for NLP-specific problems. Examine other use cases for deep learning NLP across industries. Learn about various tools and frameworks used such as - Spacy, TensorFlow, PyTorch, OpenNMT, etc. Investigate sentiment analysis and explore how to solve a problem using various deep learning steps and frameworks. Upon completing this course, you will be able to use the essential fundamentals of deep learning for NLP and outline its various industry use cases, frameworks, and fundamental sentiment analysis problems.
Deep Learning for NLP: Neural Network Architectures
Natural language processing (NLP) is constantly evolving with cutting edge advancements in tools and approaches. Neural network architecture (NNA) supports this evolution by providing a method of processing language-based information to solve complex data-driven problems. Explore the basic NNAs relevant to NLP problems. Learn different challenges and use cases for single-layer perceptron, multi-layer perceptron, and RNNs. Analyze data and its distribution using pandas, graphs, and charts. Examine word vector representations using one-hot encodings, Word2vec, and GloVe and classify data using recurrent neural networks. After you have completed this course, you will be able to use a product classification dataset to implement neural networks for NLP problems.
Deep Learning for NLP: Memory-based Networks
In the journey to understand deep learning models for natural language processing (NLP), the subsequent iterations are memory-based networks, which are much more capable of handling extended context in languages. While basic neural networks are better than machine learning (ML) models, they still lack in more significant and large language data problems. In this course, you will learn about memory-based networks like gated recurrent unit (GRU) and long short-term memory (LSTM). Explore their architectures, variants, and where they work and fail for NLP. Then, consider their implementations using product classification data and compare different results to understand each architecture's effectiveness. Upon completing this course, you will have learned the basics of memory-based networks and their implementation in TensorFlow to understand the effect of memory and more extended context for NLP datasets.
Deep Learning for NLP: Transfer Learning
The essential aspect of human intelligence is our learning processes, constantly augmented with the transfer of concepts and fundamentals. For example, as a child, we learn the basic alphabet, grammar, and words, and through the transfer of these fundamentals, we can then read books and communicate with people. This is what transfer learning helps us achieve in deep learning as well. This course will help you learn the fundamentals of transfer learning for NLP, its various challenges, and use cases. Explore various transfer learning models such as ELMo and ULMFiT. Upon completing this course, you will understand the transfer learning methodology of solving NLP problems and be able to experiment with various models in TensorFlow.
Deep Learning for NLP: GitHub Bug Prediction Analysis
Get down to solving real-world GitHub bug prediction problems in this case study course. Examine the process of data and library loading and perform basic exploratory data analysis (EDA) including word count, label, punctuation, and stop word analysis. Explore how to clean and preprocess data in order to use vectorization and embeddings and use counter vector and term frequency-inverse document frequency (TFIDF) vectorization methods with visualizations. Finally, assess different classifiers like logistic regression, random forest, or AdaBoost. Upon completing this course, you will understand how to solve industry-level problems using deep learning methodology in the TensorFlow ecosystem.
Advanced NLP: Introduction to Transformer Models
With recent advancements in cheap GPU compute power and natural language processing (NLP) research, companies and researchers have introduced many powerful models and architectures that have taken NLP to new heights. In this course, learn about Transformer models like Bert and GPT and the maturity of AI in NLP areas due to these models. Next, examine the fundamentals of Transformer models and their architectures. Finally, discover the importance of attention mechanisms in the Transformer architecture and how they help achieve state-of-the-art results in NLP tasks. Upon completing this course, you'll be able to understand different aspects of Transformer architectures like the self-attention layer and encoder-decoder models.
Advanced NLP: Introduction to BERT
In every domain of artificial intelligence, there is one algorithm that transforms the entire field into an industry-matured tool to be used across a broad spectrum of use cases. BERT is that algorithm for natural language processing (NLP). In this course, explore the fundamentals of BERT architecture, including variations, transfer learning capabilities, and best practices. Examine the Hugging Face library and its role in sentiment analysis problems. Practice model setup, pre-processing, sentiment classification training, and evaluating models using BERT. Finally, take a critical look to recognize the challenges of using BERT. Upon completing this course, you'll be able to demonstrate how to solve simple sentiment analysis problems.
Advanced NLP: Introduction to GPT
Generative Pre-trained Transformer (GPT) models go beyond classifying and predicting text behavior to helping actually generate text. Imagine an algorithm that can produce articles, songs, books, or code - anything that humans can write. That is what GPT can help you achieve. In this course, discover the key concepts of language models for text generation and the primary features of GPT models. Next, focus on GPT-3 architecture. Then, explore few-shot learning and industry use cases and challenges for GPT. Finally, practice decoding methods with greedy search, beam search, and basic and advanced sampling methods. Upon completing this course, you will understand the fundamentals of the GPT model and how it enables text generation.
Advanced NLP: Language Translation Using Transformer Model
Translating from one language to another is a common task in Natural Language Processing (NLP). The transformer model works by passing multiple words through a neural network simultaneously and is one of the newest models propelling a surge of progression, sometimes referred to as transformer AI. In this course, you will solve real-world machine translation problems, translating from English to French. Explore machine translation problem formulation, notebook setup, and data pre-processing. Then, learn to tokenize and vectorize data into a sequence of integers, where each integer represents the index of a word in a vocabulary. Discover transformer encoder-decoder and see how to produce input and output sequences. Finally, define the attention layer and assemble, train, and evaluate the translation model end to end. Upon completing this course, you will be able to solve industry-level problems using deep learning methodology in the TensorFlow ecosystem.
NLP Case Studies: News Scraping Translation & Summarization
Keeping up with current events can be challenging, especially when you live or work in a country where you do not speak the language. Learning a new language can be difficult and time-consuming when you have a busy schedule. In this course, you will learn how to scrape news articles written in Arabic from websites, translate them into English, and then summarize them. First, focus on the overall architecture of your summarization application. Next, discover the Transformers library and explore its role in translation and summarization tasks. Then, create a user interface for the application using Gradio. Upon completion of this course, you'll be able to use an application to scrape data written in Arabic from any URL, translate it into English, and summarize it
Natural Language Processing
In the Natural Language Processing lab, you will perform data pre-processing, use wordnet for Semantic Similarity, work with Machine Learning techniques, and implement word embedding for Deep Learning. You will also implement Deep Learning techniques, implement transfer learning, work with BERT, and use GPT for NLP.
Final Exam: Natural Language Processing
Final Exam: Natural Language Processing will test your knowledge and application of the topics presented throughout the Skillsoft Aspire Natural Language Processing Journey.
Course options
We offer several optional training products to enhance your learning experience. If you are planning to use our training course in preperation for an official exam then whe highly recommend using these optional training products to ensure an optimal learning experience. Sometimes there is only a practice exam or/and practice lab available.
Optional practice exam (trial exam)
To supplement this training course you may add a special practice exam. This practice exam comprises a number of trial exams which are very similar to the real exam, both in terms of form and content. This is the ultimate way to test whether you are ready for the exam.
Optional practice lab
To supplement this training course you may add a special practice lab. You perform the tasks on real hardware and/or software applicable to your Lab. The labs are fully hosted in our cloud. The only thing you need to use our practice labs is a web browser. In the LiveLab environment you will find exercises which you can start immediately. The lab enviromentconsist of complete networks containing for example, clients, servers,etc. This is the ultimate way to gain extensive hands-on experience.
Sign In
WHY_ICTTRAININGEN
Via ons opleidingsconcept bespaar je tot 80% op trainingen
Start met leren wanneer je wilt. Je bepaalt zelf het gewenste tempo
Spar met medecursisten en profileer je als autoriteit in je vakgebied.
Ontvang na succesvolle afronding van je cursus het officiële certificaat van deelname van Icttrainingen.nl
Krijg inzicht in uitgebreide voortgangsinformatie van jezelf of je medewerkers
Kennis opdoen met interactieve e-learning en uitgebreide praktijkopdrachten door gecertificeerde docenten
Orderproces
Once we have processed your order and payment, we will give you access to your courses. If you still have any questions about our ordering process, please refer to the button below.
read more about the order process
Een zakelijk account aanmaken
Wanneer u besteld namens uw bedrijf doet u er goed aan om aan zakelijk account bij ons aan te maken. Tijdens het registratieproces kunt u hiervoor kiezen. U heeft vervolgens de mogelijkheden om de bedrijfsgegevens in te voeren, een referentie en een afwijkend factuuradres toe te voegen.
Betaalmogelijkheden
U heeft bij ons diverse betaalmogelijkheden. Bij alle betaalopties ontvangt u sowieso een factuur na de bestelling. Gaat uw werkgever betalen, dan kiest u voor betaling per factuur.

Cursisten aanmaken
Als u een zakelijk account heeft aangemaakt dan heeft u de optie om cursisten/medewerkers aan te maken onder uw account. Als u dus meerdere trainingen koopt, kunt u cursisten aanmaken en deze vervolgens uitdelen aan uw collega’s. De cursisten krijgen een e-mail met inloggegevens wanneer zij worden aangemaakt en wanneer zij een training hebben gekregen.
Voortgangsinformatie
Met een zakelijk account bent u automatisch beheerder van uw organisatie en kunt u naast cursisten ook managers aanmaken. Beheerders en managers kunnen tevens voortgang inzien van alle cursisten binnen uw organisatie.
What is included?
Certificate of participation | Yes |
Monitor Progress | Yes |
Award Winning E-learning | Yes |
Mobile ready | Yes |
Sharing knowledge | Unlimited access to our IT professionals community |
Study advice | Our consultants are here for you to advice about your study career and options |
Study materials | Certified teachers with in depth knowledge about the subject. |
Service | World's best service |
Platform
Na bestelling van je training krijg je toegang tot ons innovatieve leerplatform. Hier vind je al je gekochte (of gevolgde) trainingen, kan je eventueel cursisten aanmaken en krijg je toegang tot uitgebreide voortgangsinformatie.

FAQ
Niet gevonden wat je zocht? Bekijk alle vragen of neem contact op.