Course: AI Apprentice to AI Architect - Part 2 AI Developer
duration: 19 hours |
Language: English (US) |
access duration: 180 days |

Details
In this course you will learn key technologies and frameworks for AI development. From Microsoft Cognitive Toolkit (CNTK) and Keras to Apache Spark, Amazon Machine Learning, robotics, and Google BERT, you'll explore the tools and concepts essential for AI developers. Gain a clear understanding of the AI Developer role and compare it to other engineering roles. Acquire practical skills in AI frameworks, cognitive modeling, robotics, and natural language processing. Practical exercises and a final exam will test your knowledge and proficiency.
Result
At the end of this course, you will have acquired essential skills in AI development, including Microsoft Cognitive Toolkit, Keras, Apache Spark, Amazon ML, robotics, and Google BERT. You'll understand the AI Developer role and gain practical expertise in AI frameworks, cognitive modeling, robotics, and NLP.
Prerequisites
To participate in this course, a basic understanding of AI, Machine Learning, and programming in Python is required. It is recommended to first follow part 1 of AI Apprentice to AI Architect:
- Part 1: AI Apprentice
Target audience
Software Developer
Content
AI Apprentice to AI Architect - Part 2 AI Developer
AI Framework Overview: AI Developer Role
Any aspiring AI developer has to clearly understand the responsibilities and expectations when entering the industry in this role. AI Developers can come from various backgrounds, but there are clear distinctions between this role and others like Software Engineer, ML Engineer, Data Scientist, or AI Engineers. Therefore, any AI Developer candidate has to posses the required knowledge and demonstrate proficiency in certain areas. In this course you will learn about the AI Developer role in the industry and compare the responsibilities of AI Developers with other engineers involved in AI development. After completing the course, you will recognize the mindset required to become a successful AI Developer and become aware of multiple paths for career progression and future opportunities
AI Framework Overview: Development Frameworks
A working knowledge of multiple AI development frameworks is essential to AI developers. Depending on the particular focus, you may decide on a particular framework of your choice. However, various companies in the industry tend to use different frameworks in their products, so knowing the basics of each framework is quite helpful to the aspiring AI Developer. In this course you will explore popular AI frameworks and identify key features and use cases. You will identify main differences between AI frameworks and work with Microsoft CNTK and Amazon SageMaker to implement model flow.
Working With Microsoft Cognitive Toolkit (CNTK)
Microsoft Cognitive Toolkit (CNTK) is an open source framework for distributed deep learning suitable for commercial applications. It's primarily used to develop neural networks but can also be used for machine learning and cognitive computing. It supports multiple languages and can easily be used in the cloud. These factors make CNTK a good fit for various AI projects. In this course, you'll explore the basic concepts required to work with Microsoft CNTK. You'll compare other frameworks with CNTK, examine the process of creating machine learning and deep learning models with CNTK, and learn how it can be used with several cloud services. You'll move on to learn where to access CNTK documentation, community, and installation guidelines. Finally, you'll use CNTK to predict diabetes using retina scans.
Keras - a Neural Network Framework
Keras is a deep learning package suitable for beginners. Although it is applied in multiple standard deep learning use cases, it is also used by commercial-grade products. To facilitate this, Keras provides additional, flexible options on top of the well-known Sequential API, which allow you to customize and create various neural networks. To utilize this, however, requires a more in-depth knowledge of the Keras framework. In this course, you'll develop the core skills needed to work with the Keras framework. You'll explore the advantages and disadvantages of using Keras over other frameworks, and examine how Keras can be used with TensorFlow. You'll move on to recognize how Keras is used for machine learning and deep learning. Finally, you'll implement two deep learning projects using the Keras framework.
Introducing Apache Spark for AI Development
Apache Spark provides a robust framework for implementing machine learning and deep learning. It takes advantage of resilient distributed databases to provide a fault-tolerant platform well-suited to developing big data applications. Because many large companies are actively using this framework, AI developers should be familiar with the basics of implementing AI with Apache Spark and Spark ML. In this course, you'll explore the concept of distributed computing. You'll identify the benefits of using Spark for AI Development, examining the advantages and disadvantages of using Spark over other big data AI platforms. Next, you'll describe how to implement machine learning, deep learning, natural language processing, and computer vision using Spark. Finally, you'll use Spark ML to create a movie recommendation system commonly used by Netflix and YouTube.
Implementing AI With Amazon ML
Amazon offers AI developers a wide variety of tools and frameworks including Amazon Web Services (AWS) and the Amazon Machine Learning (ML) framework. By integrating complex machine and deep learning development with the extensive computing capabilities of Amazon, Amazon ML allows AI developers to adopt big data AI services. With many companies actively using AWS and Amazon ML, a basic knowledge of this framework is beneficial. In this course, you'll learn how to use Amazon ML together with AWS, to work with big data, and to create machine and deep learning models. You'll also examine the basics of automated model deployment with Amazon SageMaker. Next, you'll explore how to use Amazon ML for image and video analysis, text-to-speech translation, and text analytics. Finally, you'll implement a system to analyze movie review sentiment using the Amazon ML framework.
Implementing AI Using Cognitive Modeling
Cognitive modeling can provide additional human qualities to AI systems. It is traditionally used in cognitive machines and expert systems. However, with extra computing power, it can be applied to more profound AI approaches like neural networks and reinforcement learning systems. Knowledge of cognitive modeling applications is essential to any AI developer aspiring to design AI architectures and develop large-scale applications. In this course, you'll examine the role of cognitive modeling in AI development and its possible applications in NLP, image recognition, and neural networks. You'll outline core cognitive modeling concepts and significant industry use cases. You'll list open source cognitive modeling frameworks and explore cognitive machines, expert systems, and reinforcement learning in cognitive modeling. Finally, you'll use cognitive models to solve real-world problems.
Applying AI to Robotics
Robots can utilize machine learning, deep learning, reinforcement learning, as well as probabilistic techniques to achieve intelligent behavior. This application of AI to robotic systems is found in the automotive, healthcare, logistics, and military industries. With increasing computing power and sophistication in small robots, more industry use cases are likely to emerge, making AI development for robotics a useful AI developer skill. In this course, you'll explore the main concepts, frameworks, and approaches needed to work with robotics and apply AI to robots. You'll examine how AI and robotics are used across multiple industries. You'll learn how to work with commonly used algorithms and strategies to develop simple AI systems that improve the performance of robots. Finally, you'll learn how to control a robot in a simulated environment using deep Q-networks.
Working with Google BERT: Elements of BERT
Adopting the foundational techniques of natural language processing (NLP), together with the Bidirectional Encoder Representations from Transformers (BERT) technique developed by Google, allows developers to integrate NLP pipelines into their projects efficiently and without the need for large-scale data collection and processing. In this course, you'll explore the concepts and techniques that pave the foundation for working with Google BERT. You'll start by examining various aspects of NLP techniques useful in developing advanced NLP pipelines, namely, those related to supervised and unsupervised learning, language models, transfer learning, and transformer models. You'll then identify how BERT relates to NLP, its architecture and variants, and some real-world applications of this technique. Finally, you'll work with BERT and both Amazon review and Twitter datasets to develop sentiment predictors and create classifiers.
AI Developer
In this lab, you will perform AI Developer tasks such as implementing prediction models and using the CNTL framewwork, as well as performing sentiment analysis and image classification. Then, test your skills by answering assessment questions after performing categoary classification using BERT and prediction analysis using pySpark.
Final Exam: AI Developer
Final Exam: AI Developer will test your knowledge and application of the topics presented throughout the AI Developer track of the Skillsoft Aspire AI Apprentice to AI Architect Journey.
Course options
We offer several optional training products to enhance your learning experience. If you are planning to use our training course in preperation for an official exam then whe highly recommend using these optional training products to ensure an optimal learning experience. Sometimes there is only a practice exam or/and practice lab available.
Optional practice exam (trial exam)
To supplement this training course you may add a special practice exam. This practice exam comprises a number of trial exams which are very similar to the real exam, both in terms of form and content. This is the ultimate way to test whether you are ready for the exam.
Optional practice lab
To supplement this training course you may add a special practice lab. You perform the tasks on real hardware and/or software applicable to your Lab. The labs are fully hosted in our cloud. The only thing you need to use our practice labs is a web browser. In the LiveLab environment you will find exercises which you can start immediately. The lab enviromentconsist of complete networks containing for example, clients, servers,etc. This is the ultimate way to gain extensive hands-on experience.
Sign In
WHY_ICTTRAININGEN
Via ons opleidingsconcept bespaar je tot 80% op trainingen
Start met leren wanneer je wilt. Je bepaalt zelf het gewenste tempo
Spar met medecursisten en profileer je als autoriteit in je vakgebied.
Ontvang na succesvolle afronding van je cursus het officiële certificaat van deelname van Icttrainingen.nl
Krijg inzicht in uitgebreide voortgangsinformatie van jezelf of je medewerkers
Kennis opdoen met interactieve e-learning en uitgebreide praktijkopdrachten door gecertificeerde docenten
Orderproces
Once we have processed your order and payment, we will give you access to your courses. If you still have any questions about our ordering process, please refer to the button below.
read more about the order process
Een zakelijk account aanmaken
Wanneer u besteld namens uw bedrijf doet u er goed aan om aan zakelijk account bij ons aan te maken. Tijdens het registratieproces kunt u hiervoor kiezen. U heeft vervolgens de mogelijkheden om de bedrijfsgegevens in te voeren, een referentie en een afwijkend factuuradres toe te voegen.
Betaalmogelijkheden
U heeft bij ons diverse betaalmogelijkheden. Bij alle betaalopties ontvangt u sowieso een factuur na de bestelling. Gaat uw werkgever betalen, dan kiest u voor betaling per factuur.

Cursisten aanmaken
Als u een zakelijk account heeft aangemaakt dan heeft u de optie om cursisten/medewerkers aan te maken onder uw account. Als u dus meerdere trainingen koopt, kunt u cursisten aanmaken en deze vervolgens uitdelen aan uw collega’s. De cursisten krijgen een e-mail met inloggegevens wanneer zij worden aangemaakt en wanneer zij een training hebben gekregen.
Voortgangsinformatie
Met een zakelijk account bent u automatisch beheerder van uw organisatie en kunt u naast cursisten ook managers aanmaken. Beheerders en managers kunnen tevens voortgang inzien van alle cursisten binnen uw organisatie.
What is included?
Certificate of participation | Yes |
Monitor Progress | Yes |
Award Winning E-learning | Yes |
Mobile ready | Yes |
Sharing knowledge | Unlimited access to our IT professionals community |
Study advice | Our consultants are here for you to advice about your study career and options |
Study materials | Certified teachers with in depth knowledge about the subject. |
Service | World's best service |
Platform
Na bestelling van je training krijg je toegang tot ons innovatieve leerplatform. Hier vind je al je gekochte (of gevolgde) trainingen, kan je eventueel cursisten aanmaken en krijg je toegang tot uitgebreide voortgangsinformatie.

FAQ
Niet gevonden wat je zocht? Bekijk alle vragen of neem contact op.